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Runx2, A Multifunctional Trénscription Factor
in Skeletal Development

Toshihisa Komori

Department of Molecular Medicine, Osaka University Medical School, Suita, Osaka 565-0871, fapan

and Japan Science and Technology Corporation, Saitama Pref. 332-0012, japan R
'

Abstract The identification of Runx2 {runt-related protein 2) function has greatly advanced the understanding
of skeletal development aver the last § years. Runx2 is regulated transcriptionally and post-transtationally through
the activity of many identified factors, although, the physiological significance of each remains 1o be demonstrated.
The interaction of Runx2 with other transcription factors and cofactors has been shown 1o be imponant in Runx2.
dependent gene regulation. Runx2 plays important roles in multiple steps of skeletal development. Runx2 determines
the lineage of osteoblasts from multipotent mesenchymal cells, enhances osteoblast differentiation at an early stage,
and inhibits osteoblast differentiation at a late stage. Runx2 plays crucial roles in chondrocyte maturation and in
the specification of cantilage phenotypes. Furthermore, Runx2 is involved in vascular invasion into cartilage and
usteoc)astogenesis. Therefore, the determination of Runx2 funclion and the investigation of the cascades of Runx2-

dependent gene regulation are important in the elucidation of skeletal biclogy. |. Cell. Biochem, 87: 1-8, 2002.
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The skeletons of vertebrates are constructed
through intramembranous or endochondrial
ossification at specific developmental times and
at specific sites. Intramembranous ossification,
which is restricted to the cranial vault, some
facial bones, and parts of the mandible and
clavicle, is performed by osteoblasts that have
differentiated from mesenchymal cells. The
remainder of the vertebrate skeleton forms
as a cartilage template that is replaced with
hone tissues through a sequential processes
of endochondrial ossification, which includes
chondrocyte maturation, vascular invasion into
the cartilage, and bone formation by osteshlasts,
Runt-related protein 2 {(Runx2)/core binding
factor 21 (Cbfal)polyoma cnhancer binding
protein 2aA (PebpZ20A) plays crucial roles in
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the processes of both intramembranous and
endochondrial essification.

Runx2is a transcription factor that belongsto
the Runx family [Komori and Kishimoto, 1998)
(Fig. 1). Three Runx genes (Runxl/CbfaZ/
Pebp24B3, Runx2/Chfal/ Pebn2xA, and Runx3d/
Cbia3/Pebp2aC) have been identified. Each of
these genes encodes a DNA-binding domain,
runt that is homologous with the Drosophila
pair-rule gene runt. However, each Runx family
protein has an unique function. Runx1 is essen-
tial for definitive hematopoiesis [Komori and
Kishimoto, 1998), Runx3 is a major growth
regulalor of gastric epithelial cells [Li et al,
2002], and Runx?2 is essential for skeletal devel-
opmoent and is described in detail below, Runxi?
was originally cloned from mouse fibroblasts,
and iLs expression has been detected in Theell
lines, NIH3T3 cells, thymus, and testis. A Runx
binding sequence, PyGPyGOTPy, has been -
entified in the regulatory reglonbofmauy'l‘ cell-
specific genes. The DNA-binding sites of Runx
have also been identified in the promoter region
of the ostescalcin gene. In addition, Runxl has
been shown to bind to the estencalein promoter
region and to transcriptionally activate tie
ostcocalein gene, The involvement of Runx?
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Fig. 1. Genesof the Runx family. Yhe main functions of Runx genes and a cofactor gene, Chib, and related
human diseases are shown. *The retation was suggested because approsinately haif of gastric cancer cells
donolexpress RUNX3, and RUNXJ suppresses tumaorigenesis of a cancer cellline, but a mutation of RUNX3

does nat ILi et al., 2002].

by Runx2-deficient (Runx2~'7) mice, which
showed a complete lack of bone formation
[Komor: and Kishimoto, 19981,

Mice carrying a heterozygous mutation in the
Runx2 locus showed a phenotype similar to
cleidoeranial dysplasia in humans, which is an
autosomal-dominant disease characterized by
hypoplastic clavieles, open fontanelles, super-
numerary teeth, and short stature {Komori
et al., 1997; Otto et al., 1997]). Further, muta-
tions of the Runx2 gene have been found in
patients with cleidocranial dysplasia [Lee et al,,
1997; Mundlos et al., 19971, indicating that a
heterozygous mutation in the Runx2 locus
results in cleidocranial dysplasia (Fig. 1).

REGULATION OF RUNX2

Runx2 is expressed as Lwo isoforms {type I
Runx2 starting with the sequence MRIPV and
type II Runx2 starting with the sequence
MASNS) that possess different N-termini, and
are expressed under different promoters
{Komori and Kishimoto, 1938]. Both type [ and
Il Runx2 isoforms are expressed in chondro-
cytes, as well as osteoblasts, although, type [I
Runx2 expression is predominant in osteoblasts
{Encmoto et al., 2000; Banerjec et al., 2001].
The two isoforms have heen observed to be
functionally similar in chondrocytes [Uetaetal.,
2001]. Runx2 is transcriptionally upregulated

by bone morphogenetic proteins (BMPs), fibro-
blast growth factors (FGFs), and retinoic acid
{RA), and is downregulated by 1,25(0H);Dy and
tumor necrosis factor-a (TNF-a) [Ducy et al,
1997; D'Souza et al., 1939; Jiménez et al., 2001;
Drissi et al., 2002; Gilbert et al., 2002] (Fig. 2).
The transcriptional regulation of Runx2 by
transforming growth factor-f§ (TGF-B) seems to
depend on the specific cell types used. TGF-j
upregulates Runx2 expression in C2C12 cells
{Lee et al,, 2000], but downregulates Runx2
expression in primary osteoblasts and ROS17/
2.8 cells tAlliston et al.,, 2001). However, the
factors that are involved in the control of Runx2
expression at specific times and locations dur-
ing the differentiation of osteoblasts and chon-
drocytes remains to be clarified.

The regulatory region of Runx2 has multiple
Runx2 bindingsites, and Runx2 has been shown
to regulate the activity of its own promoter both
positively [Ducy et al., 1[999] or negatively
[Drissi et al., 2000). Our experiments using
Runx2 and dominant-negative (DN) Runx2
transgenic mice showed no obvious anutoregula-
tion of Runx2 {Liu et al., 2001; Uetaet al., 2001},
However, our recent experiments suggest that
Runx=2 negatively regulates its own promoler
in osteoblast precursors (submitted). The nega-
tive fecdback of Runx2 expression may be
an important regulatory step in the onset of
osteoblast differentiation. Post-translational
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Fig. 2. The regulation of Runx2. Runx2 wranscription is regulated positively by BMPs, FGFs, and RA, and
negatively by TNF-a, 1,25(0HE D, (Vit Dy), and Runx2 itself. Both positive and negative regulation of Runx2
hy TGE-fis have been reported. Runx2 forms a heterodimer with Chib and interacts with many tranccription
factors and cofactors during Runx2-dependent transcriptional regulation.

regulation of Runx2 has also been reported.
MAPK-dependent phosphorylation of Runx2
stimulates Runx2-dependent transcription
[Xiao et al., 2000). Protein kinase A also
phosphorylates the transactivation domain of
Runx2 during the process of matrix metallopro-
teinase 13 (MMP13) activation by parathyroid
hormone (PTH) [Selvamurugan et al,, 2000].
The cAMP pathway, a major intracellular path-
way mediating PTII signals, suppresses Runx2
through proteolytic degradation that involves
a ubiquitin/proteasome-dependent mechanism
[Tintut ct al., [999].

Runx?2 interacts with other transcription
factors, such as Ets, Smad, and C/EBP, with
the transcriptional colactor Rb, and with the
transcriptional repressor TLE. These interac-
tions greatly influence Runx2 (unction [Sate
et al., 1998; Javed ct al., 2000; McCarthy et al.,
2000, Zhang et al., 2000, Thomas et al., 2001;
Gutierrez et al,, 2002] (Fig. 2). Further, the
fidelity of the subnuciear localization of Runx2
mediated by a nuclear-matrix-targeting signal
is required (or Runx2 (unction {Chei et al,
2001}. The transcriptional cofactor, core bind-
ing factor-p (Cbfb), which does not have DNA

binding capacity, forms a heterodimer with the
runt protein, a DNA-binding domain that is
common to the Runx family, and enhances the
in vitro DNA binding of the runt protein
[Tahirov et al., 2001]. Chfb™'~ mice die at the
mid-gestational stage owing to the lack of
definitive hematopoiesis, a phenotype similar
to Runx! '~ mice, indicating that Cbfb is essen-
tial for the function of Runx! in vivo [Komori
and Kishimoto, 1998). However, the necessity of
Chbfb for the function of Runx2 has been con-

" troversial. Chfb enhanced the promoter activ-

ities of osteccalcin and osteopontin induced
by Runx2 fHarada ct al., 1999], but Runx2 fail-
ed to form a heterodimer with Cbfb in vitro
{Thirunavukkarasu et al.,, 1998]. Qur recent
work has demonstrated that Chib plays crucial
roles in Runx2-dependent skeletal develop-
ment by enhancing the DNA binding capacity
of Runx2 (submitted).

RUNX2 AND OSTEOBLAST DIFFERENTIATION

Runx2 '~ mice dic just after birth, due to a
failure to breath [Komoriet al., 1997, OQttoet al.,
1997]. These mice completely lack both endo-
chondrial and intramembranous uvssification
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due to the absence of osteoblasts, demonstrating
that Runx2 is an essential factor for osteoblast
differentiation. Further, Runx2~'~ calvarial
cells, which completely lacked the ability to
differentiate into osteoblasts, retained the
ability to differentiate into adipocytes and
chondrocytes [Kobayashi et al., 2000]. Taken
together, these findings sugpest that Runx2
plays an essential role in steering multipotent
mesenchymal precursor cells toward an osteo-
blastic lineage (Komori, 2000] (I'ig. 3). Further,
mesenchymal condensations in the regions of
future membrancus bones were cbserved in
Osterix '~ mice, but not in Runx2™~ mice
[Komori et al., 1997; Nakashima et al., 2002],
suggesting that Runx2 is essential for mesench-
ymal condensation, which is an early step in
skeletogenesis.

Runx2 transgenic mice under the control of
the type I collagen promoter indicate that
Runx?2 promotes osteoblast differentiation at
an early stage, but inhibits osteoblast differ-
entiation at a late stage. The expression of
osteoblastic markers, including «1{1) collagen,
alkaline phosphatase, MMP13, and osteocalcin,
which are uprecgulated according to the osteo-
blast maturation, are decreased in the trans-
genic mice irrespective of the increase of the
number of osteoblasts [Liu et al., 2001] (Fig. 3).
[n these mice, most of osteoblasts exhibit a
less mature phenotype, and the numbers of

terminally differentiated osteoblasts, which
strongly express osteocalcin, and osteocytes
were diminished greatly. This finding is sur-
prising because a large number of recent in vitro
studies suggest that Runx2 is a positive reg-
ulator that can upregulate the expression of
vone matrix genes, including type | collagen,
osteopontin, bone sialoprotein (BSP}, osteocal-
cin, and fibronectin. [Ducy et al., 1997, Harada
et al,, 1999; Lee et al., 2000]. Runx2-dependent
transcriptional activation has also bepn shown
to encompass many promoters, including «1(I)
collagen, o2(I) collagen, osteopontin, osteo-
calein, MMP13, and osteoprotegerin (OP()
[Harada et al., 1999; Jiménez et al., 1999,
Thirunavukkarasu et al., 2000; Kern et al.,
2001). However, the BSP promoter is an excep-
tion, since Runx2 represses its activity [Javed
etal., 2001}. Further, the overexpression of DN-
Runx2 at a late stage of osteoblast differentia-
tion results in osteopenia, with a decreased
expression of the genes, encoding main bone
matrix proteins, including a1(l), a2(I) collagen,
osteopontin, BSP, and osteocalcin [Ducy et al.,
1999]. These findings suggest that the presence
of cofactors or other transcription factors, which
is dependent on the maturational stage of
ostcoblastic cells, greatly influences Runx2-
dependent gene regulation in vivo, Therefore,
the suppressed expression of the late osteoblas-
tic markers in immature osteoblasts may be due

Runx? Runx2 Runx2 Runx2
otetele le
.‘\\_/ —— S "— )
Pluripotent Prcosteoblast ["H“ENU!C Mature Osteoncyte
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to either the interaction of Runx2 with tran-
scriptional suppressors, such as TLE or insuffi-
cient expression of transcriptional activators
that interact with Runx2. However, the con-
tribution of Runx2 to the production of hone
matrix proleins in vive needs to be re-examined.

RUNX2 AND CHONDROCYTE
DIFFERENTIATION

In Runx2 '~ mice, whose entire skeleton is
composed of cartilage, chondrocyte differentia-
tion is severely disturbed throughout most of
the skeleton, and no vascular invasion is observ-
ed{Inadaetal, 1999; Kim et al., 1999}, All Runx
genes are expressed in chondrocytes, and Runx?2
expression is detected in mesenchymal conden-
sations [Inada et al., 1999; Kim et al,, 1999;
Levanonetal.,, 2001; Stricker et al., 2002]. Since,
DN-Runx2, which inhibits all Runx proteins,
inhibits the cellular condensation of a pre-
chondrogenic cell line ATDC5, Runx proleins

(Runxi, 2, 3)
S0x9

| !
|
g ——
it

Sox5, Sox6

| |
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may play arole in an early step of chondrogenesis
[Akivamaet al., 1999]. However, Runx2~'~ mice

" develop a cartilaginous skeleton [Komori et al.,

1997; Otto et al., 1997], and the introduction of a
Runx2-containing retrovirus into the chick limb
bud fails to induce ectopic cartilage [Stricker
et al.,, 2002]. Therefore, the involvement of
Runx proteins in the formation of cartilagin-
ous anlagen should be examined (Fig. 4). In
ATDCS5 cells, Runx2 expression is elevated prior
to differentiation to the hypertrpphic pheno-
type, and treatment with antisense oligonucleo-
tides for Runx2 inhtbit chondrocyte maturation.
Further, retrovirally forced expression of Runx2
in chick immature chondrocytes induces chon-
drocyte maturation {Enomoto et al.,, 2000].
These results indicate that Runx2 is an impor-
tant regulatory factor in chondrocyte matura-
tion [Komori, 2000] (Fig. 4).

These findings were confirmed by Runx2
transgenic mice under the control of the
type II collagen promoter [Takeda et al., 2001;
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Ueta et al., 2001]. In these mice, chondrocyte
maturation and endochondrial ossification are
greatly accelerated. Further, the introduction of
the transgene into Runx2~'~ mice rescues chon-
drocyte maturation in Runx2~'~ mice [Takeda
et al., 2001], In contrast, endechondrial ossifica-
tion is completely blocked, and the cartilages
are composed of immature chondrocytes in DN-
Runx?2 transgenic mice, demoenstrating that
Runx2 is a fundamental transcription factor
for chondrocyte maturation [Ueta et al., 2001).
Since, the inhibition of chondrocyte matura-
tion in DN-Runx2 transgenic mice is more
severe than that in Runx2~'~ mice, other Runx
proteins may also be involved in chondrocyte
maturation. Furthermore, the results of these
experiments reveal another role of Runx2 in
chondregenesis. Runx2 transgenic mice fail to
form most of their joints, and the permanent
cartilage entered into the process of endochon-
drial ossification, whereas most of the chondro-
cytes in DN-Runx2 transgenic mice retain the
phenotype of permanent cartilage [Ueta et al.,,
2001]. Joint fusions are also observed in chick
limbs infected with Runx2 containing retro-
virus {Stricker et al., 2002]. These findings
demonstrate that Runx2 plays an important
role in the specification of cartilage phenotype
{Iig. 4). The mecchanisms used to suppress
Runx?2 expression in permanent cartilage neced
to be examined, because they may be involved in
the pathogenesis of degenerative discases of
permanent cartilage, such as ostecarthritis.

VASCULAR INVASION OF CARTILAGE
AND OSTEOCLASTOGENESIS

Runx2™’ mice completely iack vascular inva-
sion into cartilage, irrespective of the presence
of calcified cartilage in some regions of the
skeleton, including the tibia, fibula, radius, and
ulna, These findings suggest that Hanx2 is
involved in vascular invasion [Inada et al., 1999,
Kim et al., 1999). However, the function of
Runx?2 in vascular invasion is unclear. Although,
vascular endotheiial growth factor {(VEGEF) is a
candidate for the lack of vascalar invasion in
RBunx?2 ' mice, VEGF expression in Runx2 ™'~
cartilage is controversial [Zelzer et al., 2001,
[imeno et al., 2002, After vascular invasion
occurs, the hematopoietie system, including
endothelial cells, affects growth plate vazcular-
ization. When Runx2 ' cartilage is transplan-
ted into the spleen of wild-type mice, vascular

invasion into the eartilage occurs, but isseverely
retarded compared with wild-type cartilage,
suggesting that Runx2-dependent gene regula-
tion in terminally differentiated chondrocytesis
important for vascular invasion {Himeno et al,,
2002]. Osteopontin, BSP, and MMP13, which
are severely reduced in Runx2™~ terminally
differentiated chondrocytes, are involved in
vascular invasion into cartilage through the
enhancement of osteoclast attachment and the
cleavage of type II collagen (Fig. 4). [However,
additional Runx2-dependent gene regulation in
terminally differentiated chondrocytes is requir-
ed for efficient vascular invasion (Himeno et al,,
2002]. These Runx?2 target genes that are im-
portant for proper vascular invasion remain to
be identified.

A lack of osteoclasts in Runx2™/" mice
suggests a potential role of Runx2 in osteo-
clastogenesis [Komori et al., 1997]. Receptor
activator of NF-xB ligand (RANKL)-RANK
signaling is essential for osteoclastogenesis,
and OPG, which is a decoy receptor of RANKL,
inhibits RANKL-RANK signaling. The 5’ flank-
ing region of the RANKL gene has two putative
Runx binding sites, and RANKL expression s
severely decreased in Runx2 ™'~ mice [Gaoet al.,
1998; Kitazawa et al., 19997, Although, Runx?2
was able to bind to these sites, no transerip-
tional activation is observed [O'DBrien et al.,
2002]. In contrast, the 5 flanking region of OPG
has many putative Runx binding sites, and
Runx2 stimulates OPG promoter activity [Thir-
unavukkarasu et al., 2000]. [However, in Runx?2
transgenic mice, with Runx2 under the control
nf the 1ype | enllagen promoter, both RANKL
and OP'G expression are decreased in adult mice
[Liu ot al, 2001]. Further, our recent data
demonstrate that Runx2 induces RANKL
expression and inhibits OPG expression 1n
immature mesenchymal cells (unpublished
communications). Although, the regulation of
RANKL and OP( expression by Runx2 seems to
be dependent un the maturational stage of ustew-
blast lineage cells, the role of Runx2 in osteo-
clustogenesis needs Lo be furthor investigated.
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